Understanding and Improving Service Discovery
iIn Hostile and Volatile Environments

Chris Dabrowski (897)
Pervasive Jesse Elder (897)

Computing Kevin Mills (892)
Program

Doug Montgomery (892)
Scott Rose (892)

NRC Review Panel
February 8, 2002

‘‘Agile Sofcware for an Uncercain World*’

ot =

oW,

r-roqgram 0

2
~

Irg

[y

r =3 €|

~
I.)
o
o~
|
N
S

)
O
N
™

S
N
q
O

[l

Dynamic Discovery Protocols in Essence

Dynamic discovery protocols enable network elements (including
software clients and services, as well as devices):
(1) to discover each other without prior arrangement,
(2) to express opportunities for collaboration,
(3) to compose themselves into larger collections that cooperate to
meet an application need, and
(4) to detect and adapt to changes in network topology.

Selected First-Generation Dynamic Discovery Protocols

—

-~
SLP Adaptive

oooooooo

w 3-Party P) 2-Party for Enterprise

Design e FORUM Design " :mm 2/3—!3arty
JINT 4@ Design
Saiutation Vertically | o | Network- €3 Bluetooth™

aaaaaa

bbbbbbbb

" Integrated

3-Party
Design

Dependent
3-Party Design

Network-Dependent
2-Party Design

Presentation Outline
e Project objective and plan (one slide)

e Accomplishments over past year (one slide)

e Context setting (two slides)
m Alternative architectures for service-discovery systems
m Technical approach to modeling and analysis in first phase of the project

e Understanding consistency-maintenance in service-discovery systems
under increasing communication failure (12 slides)

e Summary of progress to date (one slide)

e Plans for upcoming year (one slide)

- INID N NN T CT VAl Ive QONNipouweniIyy 1r r1oYyraryr =020

Project Objective

Research, design, and characterize self-adaptive mechanisms to improve
performance of discovery protocols in hostile and volatile environments.

Project Plan in Three Phases

Phase | — characterize performance of selected service-discovery protocols

(Universal Plug-and-Play — UPnP — and Jini) as specified and implemented

= develop architectural models for each protocol

= establish performance benchmarks based on default or recommended
parameter values and on required or most likely implementation of behaviors

Phase |l — design, simulate, and characterize self-adaptive mechanisms to

improve performance in volatile environments

devise algorithms to adjust control parameters and behavior in each protocol
simulate performance of each algorithm against benchmark performance
select most promising algorithms for further development

Phase |l — implement and validate the most promising algorithms in publicly

available reference software (from Sun Microsystems and Intel)

Accomplishments This Year

Modeling

Ny
Ny
N
"

~
S
0
g
II.
N
)
gy
~

-
iy
I.‘
o
My

|
=

D

;
N
o
%
N
q
Q
II‘

Completed Rapide architectural-description language model of UPnP
specification (Jini specification completed last year)

Developed framework of (SLX) discrete-event simulation model for UPnP
(model patterned after publicly available Intel Linux implementation)

Analysis

Explored correctness of Jini model against various consistency conditions;
found four areas of concern; briefed Sun’s Jini design team on findings (see
addendum for more information)

Investigated consistency maintenance in Jini and UPnP models under
increasing interface-failure rate (technical subject of current talk)

Measurement (see addendum for more information)

Designed independent benchmark service and scenarios for service-
discovery systems

Created synthetic workload generation tools for emulating the behavior of
large scale, dynamic, ad-hoc networking environments

Conducted baseline performance measurement experiments to compare the
performance of UPnP and Jini in benchmark scenarios

\ }!il‘d Party

‘ Two Party vs. Three Party Architectures

SERVICE MANAGER service information collection SERVICE CAGHE MANAGER M
d Mlkiscover Networ k Context() 0. 0. |[llkiscover Network Contexi()
N [l<<not shr>> Cache Manager Discover y() — l<<not shr>> activate Manager Discovery()
) l<<OPT>> Announce Service Processing() +senviceinfo . [lctivate Announce Processing() s i
+info cac he
S M <not shr>> start Renewal Task() fnio cache ttart Matching Task() e"v ‘e

tart Aging Task()
Eervice Cache Manager() ‘a‘he

Servi:/’é/ 07 [32 Manager
€ach 1 0.1

\ source
' orvice Manager()
not shr>> start Service Parameter Matching Task() 0.*
: Service
|
Manager conins

1

<<repositor y>> nages <<re_pository>> <.<rep.ositor3p>
{ Service Repository seI'ViGe requégsts \ SeqiceCache pciicaioniCacke “ ti‘i ti
. o cation
. Seryice o Provider
. <ﬁa €ache
I
\ ne o s“o loy SERVICE PROVIDER Aggrﬂ tes
1 Aggregates 0.*
| 0.* service availabilty <<repositor y enr y>>
) P — requpsts Notuﬁcatl-on Request
b SERVICE DESCRIPTION (from Dta View) Notification
\ (from Data View)
: Service e . \ Request
Description YT

0.1

.discover Networ k Context()
.Service Discovery()
.<<not shr>> start Renewal Task()

[Service User()

Service Para r:n:t:erpgshg:—gy; T\lotiﬁcaﬁon S U servj‘e
Parameter 7 User 0 J
€hange 0.’ -

{
.
N|

Notification Para n:m::g : g:)I:e>q uest Parameter .LS?EC"::;“:‘?F:Z‘:/;AN = ! ;::\‘:?;Sg:cy:: \
‘ae he (from Data View) Change
Notification Local Local \
Request €ache Service
€ache

A R B A T N R —

- ININ I Tk §F I VEIJDIV G S ITTINAGIT F

Phase | Modeling Approach: Use Rapide to Model and
Understand Dynamics of Jini and UPnP

Time | Command Parameters

5 NodeFail SM4

5 LinkFail SCM1 SM4
10 GroupJoin SM4 GROUP1

10 FindService | SU8512SXYZALL

50 AddService | SM4 SCM3 T ATT APIGUI 20 30

Specification

-- ** 33 DIRECTED DISCOVERY CLIENT INTERFACE **

-- This is used by all JINI entities in directed

-- discovery mode. It is part of the SCM_Discovery

-- Module. Sends Unicast messages to SCMs on list of

-- SCMS to be discovered until all SCMS are found.

-- Receives updates from SCM DB of discovered SCMs and

-- removes SCMs accordingly

-- NOTE: Failure and recovery behavior are not

-- yet defined and need reviw.

TYPE Directed_Discovery_Client
(SourceID : IP_Address; nSCMsToDiscover : SCMList; StartOption : DD_Code;
InRequestInterval : TimeUnit; InMaxNumTries : integer; InPV : ProtocolVersion)

IS INTERFACE

SERVICE DDC_SEND DIR :DIRECTED 2 STEP PROTOCOL;

SERVICE DISC_MODES : dual SCM_DISCOVERY_MODES;

SERVICE DD_SCM_Update : DD_SCM_Update;

SERVICE SCM_Update : SCM_Update;

SERVICE DB_Update : dual DB_Update;

SERVICE NODE_FAILURES : NODE _FAILURES; -- events for failure and recovery.

ACTION

IN Send_Requests(),
BeginDirectedDiscovery();

BEHAVIOR
action animation_Jam (name: string);
MySourceID : VAR IP_Address;
PV : VAR ProtocolVersion;

q Topology

Aggressive Discovery Multicast Group

Service
Manager

Remote Method Invocation

L Service

Cache
Manager
A

Service Unicast Links

User

=]

y ,_n il icast
- Dintrilutor

Consistency
Conditions

For All (SM, SD, SCM):

(SM, SD) IsElementOf SCM registered-services (CC1)
implies SCM IsEl tOf SM discovered-SCMs

For All (SM, SD, SCM):
SCM IsElementOf SM discovered-SCMs & (CC2)

(SD) IsElementOf SM managed-services

implies (SM, SD) IsElementOf SCM registered-services
For All (SM, SD, SCM):

SCM IsElementOf SM discovered-SCMs &

(SM, SD) IsEl tOf SCM istered-services &

NOT (SCM IsEl tOf SM persistent-list

implies Intersection (SM GroupsToJoIn SCM GroupsMemberOf)

For All (SM, SD, SCM, SU, NR):
(SU, NR) IsElementOf SCM requested-notifications &
(SM, SD) IsElementOf SCM registered-services &
Matches((SM, SD), (SU,NR))
implies (SM, SD) IsElementOf SU matched-services

(cc3)

(cca)

Lazy Discovery

Execute W|th
Rapide ==

u-l-iv--a— [ad]

o =
S 31 o8 121 el
P . P
o 14 0 ot e 3wt Lt

Analyze
POSETs

Assess Correctness,
Performance, &
Complexity

- INID N NN T CT VAl Ive QONNipouweniIyy 1r r1oYyraryr =020

Understanding Consistency Maintenance in Discovery
Architectures during Interface Failure

How do various service discovery architectures, topologies, and fault-recovery
mechanisms perform under deadline during interface failure?

Qutline of Experiment

Deploy models of two-party (UPnP) and three-party (Jini) architectures with
one SM and five SUs (for Jini include two topologies — one and two SCMs).

« Ensure initial discovery and information propagation completed.

* Introduce a change in the service description at the SM, and establish a
deadline for propagating the new information to all SUs.

Measure the number of messages exchanged and the latency required to
propagate the information to all SUs, or until the deadline arrives, under
two different propagation mechanisms: polling and eventing.

« Repeat this experiment while varying the percentage of interface failure
time for each node up to 75% (in increments of 5%).

Two-Party (UPnP) Topology for Experiment

UPnP Multicast Group / \

-

N

b
l
\
.
0
I

<

S

~

N

S

S

S |

S |

3 HTTP/TCP Unicast Links

v > Service Service
3 User | Manager
S _

o f HTTP/UDP Unicast Links T

Five SUS One SM

Three-Party (Jini) Topologies for Experiment

One SM Aggressive Discoveri/ \Multicast Group

.' Y~ K Optional
) : 2nd SCM
'= Service

: “— Manager

1 =3 Remote Method Invocation

: | :

; 5 Service

|

! < Cache |:

A . Unicast Links .

5 | Service Manager |;

> i

i User ||} \

: / \4 One SCM
) i Lazy Discovery \ /Multicast Group

ll Five SUs ~1

Failures Interfere with Discovery and Information Propagation

e Interface Failure — Tx, Rx, or Both
- Due to nearby enemy jamming or other interference
- Due to multi-path fading during mobility

e Path Loss — Pt-Pt or Area-Area and Full-duplex or Half-duplex
= Due to persistent congestion
- Due to physical link cuts
- Due to enemy jamming at routers

e Message Loss — under both UDP and TCP (>delay)
- Due to sporadic or distant enemy jamming or other interference
- Due to transient congestion
- Due to multi-path fading during mobility

e Node Failure — Partial or Complete with variable persistence of information
- Due to enemy bombardment or cyber attacks
- Due to mobility associated with military operations

Discovery Systems Divide Recovery Responsibilities:
Lower Layers, Discovery Protocol, and Application

e Selective Reliable Delivery by Lower Layers
- TCP attempts retransmissions (basis for Jini-RMI and UPnP-HTTP/TCP)
- UDP messages in UPnP sent as multiple copies

e Periodic Announcements by Discovery Protocol
= Allows caching nodes to discard information when TTL expires
= Jini includes aggressive search at node start up, while UPnP permits
nodes to undertake aggressive search at any time

e Periodic Refreshing of Resources Required by Discovery Protocol
= Allows resource owner to free resource when refresh period expires

e Remote Exceptions Issued by Protocol Over TCP Links
- Allows application to take recovery action: Ignore? Retry? Discard
knowledge of service or resource?

Two
Party

Three
Party

Consistency-Maintenance Mechanisms for Experiment

Polling Eventing
SM SuU SM SuU
Get Description Notification Request
< <
Change |— Change — Get Description
Service |» o Service
Get Description .
< —> Notification .
Get Description
« Get Description
SM SCM SU ||| sm SCM SuU
Find Service Notification
Request

Change Service

>

Find Service
<

Find Service

Change Service

Find Service

> Notification

- ININI N NNk GG T VEOIIIVG U TTINARITINY 1 Ty CYYVyYyy

Interface-Failure Model for Experiment

Q D/2 D-(D*F) D
Discovery Change introduced _
occurs & sometime in this Interfacde f:\tllures
initial interval repaired arer
: .) . appropriate time
information Interface failures occur sometime
propagated during this interval
TIME >

1. Choose a time to introduce the change [uniform(Q, D/2)]
Random 2. For each node, choose a time to introduce an interface failure
Processes [uniform(Q, D-(D*F))]
3. When each interface failure occurs, choose the scope of
the failure, where each of [Rx, Tx, Both] has an equal probability

Q = end of quiescent period (100 s in our experiment)
D = propagation deadline (5400 s in our experiment)
F = Interface Failure Rate (variable from 0% - 75% in 5% increments in our experiment)

Qur Modeled Responses to Remote Exceptions

("“Approximate” — see addendum for details)

e Ignore REX Received
- When replying to a remote-method invocation
- When attempting to cancel a lease
- When attempting to renew a lease (But then attempt to obtain a new lease)

e Retry Operation for Some Period of Time - Then Quit If Not Successful
- When attempting to register for notification events
- When a UPnP SU requests service descriptions
- When Jini SM attempts to register service or change service on SCM

e Eliminate Local Knowledge of Discovered Entity
- When remote exceptions occur for too long a period
- When UPnP SU fails to hear scheduled SM announcement

Metrics Devised for Consistency-Maintenance Experiments
(see addendum for formal definitions)

e Update Responsiveness (R)

Assuming that information is created at a particular time and must be propagated
by a deadline, then the difference between the deadline and the creation time
represents available time in which to propagate the information. Update
Responsiveness, R, measures the proportion of the available time remaining after
the information is propagated. [1 = all time remains and 0 = no time remains]

e Update Effectiveness (U)

Update Effectiveness, U, measures the probability that information will propagate
successfully to a SU before some deadline, D. [1 = information will be propagated
and 0 = information will not be propagated]

e Update Efficiency (E)

Given a specific topology of SUs and SMs in a discovery system, examination of
the available architectures (two-party and three-party) and mechanisms (polling
and eventing) will reveal a minimum number of messages that need to be sent to
propagate information from all SMs to all SUs in the topology. Update Efficiency,
E, can be measured as the ratio of the minimum number of messages needed to
the actual number of messages observed. [1 = only minimum number of
messages needed and 0 = infinite number of messages needed]

Median Update Responsiveness

UPnP (2-Party) vs. Jini (3-Party)

1
~..~\. ~T‘Tl\,’l ‘\‘

0.9 e N !
3 . Lo .
o 0.8] o
c
S
= 0.7
S
o 0.6 -
Q —e— 2-Party Notification
©x 05 g
% —a— 2-Party Polling
s 04 .
o - - + - - 3-Party Notification 1 SCM
-
£ 0.3 | - =--3-Party Polling 1 SCM
g 0.2 - — -+ — 3-Party Notification 2 SCMs
= — a— 3-Party Polling 2 SCMs

0.1 -

0 I I I I I I I
0 10 20 30 40 50 60 70

Interface Failure Rate (%)

Update Effectiveness

UPnP (2-Party) vs. Jini (3-Party)

!
y
W
=
»)
o)
~

1 ==
\‘l
4 0.95 -
IE 0.9 N
;! 7))
3 8
5 2 0.85
o B
o 2
< 5 08¢y g
) o
) “H: ipr . :
Y 075 - —e— 2-Party Notification R SN
B —s— 2-Party Polling TN
5 07 - +--3-Party Notification 1 SCM vy
g. ' -- = -- 3-Party Polling 1 SCM ‘
0.65 — -+ — 3-Party Notification 2 SCMs
: — a— 3-Party Polling 2 SCMs
0.6 |
L 2
0-55 I I I I I I I
0 10 20 30 40 50 60 70

Interface Failure Rate (%)

o o
o © -

o o
o N

Average Update Efficiency
e I e i
O -~ N W P O

Average Update Efficiency
UPnP (2-Party) vs. Jini (3-Party)

| | ¢

—e— 2-Party Notification
—a— 2-Party Polling

- -+ - - 3-Party Notification 1 SCM
- - ® - - 3-Party Polling 1 SCM

— -+ — 3-Party Notification 2 SCMs
— 4 — 3-Party Polling 2 SCMs

o

40 60
Interface Failure Rate (%)

80

Summary of Progress to Date

e Models of service-discovery protocols (written in the Rapide architecture-
description language) .
= Jini (models the Sun Microsystems version 1.1 specification)

« UPNP (models the Microsoft version 1.0 specification)

e Papers

= “Analyzing Properties and Behavior of Service Discovery Protocols Using
an Architecture-based Approach”, C. Dabrowski and K. Mills, Proceedings
of Working Conference on Complex and Dynamic Systems Architectures

= “Understanding Consistency Maintenance in Service Discovery Architectures
during Communication Failure”, C. Dabrowski, K. Mills, and J. Elder,
submitted to the 3 International Workshop on Software Performance.

= “Survivable Software for Harsh Environments”, C. Dabrowski, K. Mills, and
J. Elder, submitted to MILCOM 2002.

e Interactions
- Gave an invited “Tech-a-Tech” presentation to Sun Jini team
- Presented work at 2001 Pervasive Computing Conference
= Obtained co-funding from DARPA and ARDA

-~ NI N NN T CTVAIve QUINTIJIUHRITNIY 1 TOYIcairii

“rograin

=
2

Irg

[y

r =3 €|

~
I.)
o
o~
|
N
S

)
O
N
™

S
N
q
O

[l

Plans for Upcoming Year

Modeling

Complete (SLX) discrete-event simulation model for UPnP

Validate model against current results from Rapide model

Develop SLX simulation models for Jini and SLP

Extend generic structural model of service discovery protocols to include
message exchanges and consistency conditions, and publish the extended
generic model

Analysis

Investigate consistency maintenance in Jini and UPnP models under
increasing message-loss rate

Investigate consistency maintenance in Jini and UPnP models under node
and thread failure

Propose, model, and evaluate selected self-adaptive mechanisms for UPnP
Consider analytical model for update effectiveness during interface failure

Slides Containing Additional Details
on Consistency-Maintenance Experiments

INIINI N NN e QT VOIJDIVO U TTTNIARIT I 1 T OUOJICITT

Equating a Generic Structural Model of Service Discovery
Architectures to Selected Commercial Discovery Systems

Generic Model Jini UPnP SLP

Service User Client Control Point User Agent

Service Manager Service or Root Device Service Agent

Device Proxy

Service Provider Service Device or Service Service

Service Description Service ltem Device/Service Description Service Registration
Identity Service ID Universal Unique ID Service URL
Type Service Type Device/Service Type Service Type
Attributes Attribute Set Device/Service Schema Service Attributes
User Interface Service Applet Presentation URL Template URL

Program Interface

Service Cache Manger

Service Proxy

Lookup Service

Control/Event URL

not applicable

Template URL

Directory Service Agent
(optional)

oy 4 §F Y F CIrsi

- ININJ I L e O S d WAIDI VY S ST TN O

I & AN FN

The Six Combinations of Architecture, Topology, and
Consistency-Maintenance Mechanism Used in Experiments

Architectural Variant

Protocol Basis

Consistency-Maintenance Mechanism

Two-Party UPnP Polling

Two-Party UPnP Notification (with notification registration
on SM)

Three-Party (Single SCM) Jini Polling (with service registration on SCM)

Three-Party (Single SCM) Jini Notification (with service registration and
notification registration on SCM)

Three-Party (Dual SCM) Jini Polling (with service registration on SCM)

Three-Party (Dual SCM) Jini Notification (with service registration and

notification registration on SCM)

v
.
|
)
d
1
}
Y
4
.
|
N
x|
X
S
|
|
)
i
{
.
N
l

Specific Division of Failure-Recovery Responsibilities
Used in Experiments

Responsible Recovery Two-Party Three-Party
Party Mechanism Architecture (UPnP) Architecture (Jini)
Lower-Layer UDP No recovery No recovery
Protocols TCP Issue REX in 3075 s Issue REX in 30-75 s
Lazy SM: announces with n (3+2d+k) | SCM: announces every 120 s
Discovery messages every 1800 s
Discovery : .
Protocols . SU: issues Msearch every 120 s SU and SM: issue seven probes
Aggressive _ _
: (after purging SD) (at 5 s intervals) only
Discovery :
during startup
lanore REX SU: HTTP Get Poll SU: FindService Poll
9 SM: Notification SCM: Notification
SU: HTTP Get after discovery SM: depositing or refreshing SD
retry in 180 s (retries < 3) copy on SCMretry in 120s
I Retry aft
Application el-\r,}g(er SU: registering and refreshing
Software Subscribe requests retry in notification requests with SCM
120s retryin 120 s
. SU: purge SD after failure to SU and SM: purge SCM after
Discard . :
receive SM announcement 540 s of continuous
Knowledge

within 1800 s

REX

INTI A GIN IS § I IAHYV ¥V Yyy ===

- ININ I 1l e f T VEIJDIV GG I

Significant Parameters and Values Used in Experiments

Parameter Value

Polling interval 180 s
E:Oﬁa;’;%r tirrl]rte)gfh Registration TTL 1800 s
party architectures | Time to retry after 120 s

REX (if applicable)
UPnP-specific Announce interval 1800 s
behavior for two- | Msearch query interval 120 s
party architecture SU purges SD At TTL expiration
Jini-specific Probe interval 5 s (7 times)
behavior for three- | Announce interval 120 s

party architecture

SMor SU purges SCM

After 540 s with only REX

Interface failure
parameters

Failure incidence

Once per run for each node

Failure scope

Transmitter, receiver, or
both with equal likelihood

Failure duration

5% increments of 5400 s
from 0 to 75%

Transmission and
processing delays

UDP transmission
delay

10 us constant

TCP transmission delay

10-100 us uniform

Per-item processing
delay

100 us for cache items
10 us for other items

Console Output from a Sample Experiment Run

Rate - 5

Run number - 21

SM 1 OUT Interface down 365, up 635
SCM 1 OUT Interface down 2417, up 2687

SCM 2 IN & OUT Interface down 519, up 789

SU 1 1IN Interface down 2238, up 2508
SU 2 IN Interface down 3256, up 3526
SU 3 IN Interface down 207, up 477
SU 4 OUT Interface down 2876, up 3146
SU 5 1IN Interface down 4478, up 4748
Performance:

SM 346.00000 346.00000 6 17

SCM 346.00000 346.00016 61 102

SCM 346.00000 346.00015 61 105

SU 346.00000 346.00109 0 11

346.00000 346.00109 0 11
346.00000 5400.00000 4 11
346.00000 346.00109 0 11
346.00000 346.00114 0 11

n
G
O w NN

U ININD L NN N QT VAIVEOE GCUVUTTINIALITNISYy 7 T OYIcvvyy =000

Update Responsiveness (R)

Let D be a deadline by which we wish to propagate information to each
service user (SU) node (n) in a service discovery topology.

Let t. be the creation time of the information that we wish to propagate, where . < D.

Let t,,, , be the time that the information is propagated to SU n, where n =1 to N, and
U(n)
N is the total number of SUs in a service discovery topology.

Define information-propagation latency (L) for an SU n as:

L, = (tym - t)(max(D, t,,) —teo).

Define update responsiveness (R) for an SU n as:

R=1-L.

NI L NN T QT VATV GCVUTTIN AN ISy 7V T 9Oy civyy 2020000

Update Effectiveness (U)

Let the definitions related to Update Responsiveness, R, hold.

Let X represent the number of runs during which a particular service discovery
topology is observed under identical conditions.

Recalling that N is the total number of SUs in a service discovery topology,
define the number of SUs observed under identical conditions as:

O=X-N.
Define the probability of failure to propagate information to an SU as:

P(F) = (count(R,’j== 0))/O, wherei=1..Nandj=1.X.

Define the Update Effectiveness for a given set of conditions as:

U=1-P(F).

Update Efficiency (E)

Let the preceding definitions associated with Update Responsiveness and Update
Effectiveness hold.

Let M be the minimum number of messages needed to propagate information from
all SMs to all SUs.

Let S be the observed number of messages sent while attempting (failures may occur)
to propagate information from all SMs to all SUs in a given run of the topology.

Define average Update Efficiency as:

E.g= (sum(M/S,))/X, where k=1.X.

U ININD L NN N QT VAIVEOE GCUVUTTINIALITNISYy 7 T OYIcvvyy =000

Summary Statistics for Performance of
Each Combination on Each Metric

)y €&»»+»» @@

‘ Mean (across all interface-failure rates)

) :

N Med_lan Effectiveness A\{er age

1 Responsiveness Efficiency

Two-Party Notification 0.663 0.921 0.212

i Two-Party Polling 0.615 0.973 0.251

.

] Three-Party Notification

: (Single SCM) 0.601 0.894 0.389

)

X Three-Party Polling

! (Single SCM) 0.530 0.911 0.201

] Three-Party Notification

o

»i (Dual SCM) 0.655 0.942 0.221
Three-Party Polling

‘ (Dual SCM) 0.587 0.927 0.110

95% C.I. for Each Metric-Combination
at Selected Failure Rates

Responsiveness Effectiveness Efficiency

5% 40% | 75% 5% 40%. | 75% 5% 40% | 75%

1.000 | 0.561 | 0.111 | 0.970 | 0.954 | 0.709 | 0.354 | 0.065 | 0.031
1.000 | 0.783 | 0.162 | 0.977 | 0.966 | 0.787 | 0.467 | 0.220 | 0.354

I7 IS4 7 § 4 F L

Two-Party Notification

0.975 | 0.501 | 0.076 | 1.000 | 0.993 | 0.760 | 0.501 | 0.031 | 0.042

Two-Party Poll
wo-rarty Foling 0.980 | 0.849 | 0.138 | 1.000 | 0.993 | 0.826 | 0.666 | 0.230 | 0.059

Three-Party Notification | 1.000 | 0.605 | 0.042 | 0.993 | 0.939 | 0.521 | 0.827 | 0.099 | 0.033

(Single SCM) 1.000 | 1.000 | 0.095 | 0.993 | 0.955 | 0.652 | 1.000 | 0.504 | 0.320
Three-Party Polling 0.974 | 0.244 | 0.043 | 1.000 | 0.946 | 0.660 | 0.387 | 0.043 | 0.040
(Single SCM) 0.980 | 0.412 | 0.083 | 1.000 | 0.960 | 0.753 | 0.512 | 0.173 | 0.164
Three-Party Notification | 1.000 | 0.562 | 0.099 | 0.970 | 0.977 | 0.730 | 0.335 | 0.035 | 0.009

(Dual SCM) 1.000 | 1.000 | 0.143 | 0.977 | 0.983 | 0.803 | 0.599 | 0.290 | 0.096

' Three-Party Polling 0.974 | 0.391 | 0.056 | 1.000 | 0.939 | 0.660 | 0.218 | 0.033 | 0.019

(Dual SCM) 0.986 | 0.543 | 0.096 | 1.000 | 0.955 | 0.753 | 0.273 | 0.103 | 0.059

- ININ N e T VEIJII VYV & T TIN AL

Slides QOutlining Four Issues Shared With Sun
Based on Exploring Correctness of our Jini Model

SUs Registered for Notifications Should Receive Them

Sample Consistency Condition #4 (Service Notification)

y | For All (SM, SD, SCM, SU, NR):

: (SU, NR) IsElementOf SCM requested-notifications &

! (SM, SD) IsElementOf SCM registered-services &

: Matches ((SM, SD), (SU, NR))

' implies (SM, SD) IsElementOf (SU matched-services)*

i ...that is, if an SU has requested notification with a Service Cache Manager of a

! service that matches a service description registered by a Service Manager on

' the same Cache Manager, then that service description should be provided to the
Service User.

*Assuming absence of network failure and normal delays due to updates

* SM is Service Manager - requested-notifications is a set of (SU,NR) pairs

» SD is Service Description maintained by the SCM

* SCM is Service Cache Manager - registered-services is a set of (SM,SD) pairs

* SU is Service User maintained by the SCM

* NR is Notification Request - matched-services is the set of (SM,SD) pairs
maintained by the SU

Should the Jini Specification Advise about Possibility for
Registration Race Condition?

Find X

| Discover SCM1

i Found SCM1 :

. Register SM4 SD1 X

Scenario Su7 SCM1 SM4
' AddSCM SCM1 5 Discover SCM1 ,
L _ ! Found SCM1 l
: : FindService SCM1 X |

! AddSCM SCM1

 Notify SCM1 X Added ,. !

Notify SU7 X Added . » Registered Services
i ' (SM4, SD1, X)
: Matched Services L_Mdﬂﬂd——f%
() : e Requested
i i Notifications
! 5 (SU7, X)
CC4 Violated i f

NI L NN T QT VATV GCVUTTIN AN ISy 7V T 9Oy civyy 2020000

For All (SM, SD, SCM, SU, NR):
(SU, NR) IsElementOf SCM requested-notifications & (CC4)
(SM, SD) IsElementOf SCM registered-services &
Matches((SM, SD), (SU,NR))
implies (SM, SD) IsElementOf SU matched-services

Discovered SCMs Should Be Members of Same Group As
Discovering Entity

Sample Consistency Condition #3 (Intersecting Group Membership)

Y | For All (SM, SD, SCM):

: SCM IsElementOf SM discovered-SCMs

! (SM, SD) IsElementOf SCM registered-services

NOT (SCM IsElementOf SM persistent-list)

' implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)*

...that is, if a Service Manager has discovered, and registered its service
descriptions on, a Service Cache Manager that is not on the Service Manager’s
persistent list, then the Service Manager must be seeking group membership in
at least one group the Service Cache Manager belongs to.

*Assuming absence of network failure and normal delays due to updates

* SM is Service Manager - registered-services is a set of (SM,SD) pairs

» SD is Service Description maintained by the SCM

« SCM is Service Cache Manager - discovered-SCMs is a set of SCMs discovered
by the SM

* Persistent-list is the set of SCMs the SM is
seeking though directed discovery

U ININD L NN N QT VAIVEOE GCUVUTTINIALITNISYy 7 T OYIcvvyy =000

What Might Happen When
SCM Changes Group Membership Dynamically?

Scenario

GroupJoin GROUP1

SM4

Probe SM4 GROUP1

Groups To Join
(GROUP1)

{ Found GROUP 1 SCM1

Discovered SCMs
MD (SCM1)
DD ()

S R Register SM4 SD1

AdminDeleteGroup GR0l§IP1

SCM1

Groups To Join
(GROUP1)

t

CC3 Violated

—

Group Membership
(GROUP1, GROUP2)

Registered Services
(SM4, SD1)

Group Membership
(GROUP2)

f

For All (SM, SD, SCM):
SCM IsElementOf SM discovered-SCMs &
(SM, SD) IsElementOf SCM registered-services &
NOT (SCM IsElementOf SM persistent-list)

implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)

(CC3)

y
.
\
1
{
J
\
.

Jini Entities Should Only Register with Discovered SCMs

Sample Consistency Condition #1(Register Only with Discovered SCMs)

SCM?” Llst.

For All (SM, SD, SCM): (SM, SD) IsElementOf SCM registered-services
implies SCM IsElementOf SM discovered-SCMs*

...that is, a Service Manager should register its Services on an Service
Cache Manager only if it maintains that Cache Manager on its “known

*Assuming absence of network failure and normal delays due to updates

* SM is Service Manager
« SD is Service Description
« SCM is Service Cache Manager

* registered-services is a set of (SM,SD) pairs

maintained by the SCM

» discovered-SCMs is a set of SCMs discovered

by the SM

Could the Jini Specification Lead to Implementations Exhibiting
Undesired Interaction between Directed and Multicast Discovery?

9]
Consistency Restored *

For All (SM, SD, SCM):
(SM, SD) IsElementOf SCM registered-services (CC1)
implies SCM IsElementOf SM discovered-SCMs

E Scenario sm4 SCM3
W T 0
:.' N GroupJoin GROUP2 .+ Probe SM2 GROUP2 :
¢ : 3 Discovered SCMs [+— Found SCM3 GROUP2 :
E E (SCM3) Register SM4 SD1 *—;> Registered Services
3 ! : (SM4, SD1)
3 Based on one I Groupleave GROUP2 ! Discover SCM3 ,
b 4 N :\,:
) possible N\ Adascmscms /i Cancel SM4 SD1 ;
3 , : N : :
S Inte I’pretatlon of 3 Discovered SCMs . Found SCM3 I Register(?c; Services
5 I : 3 (SCM3) D :
’ SpeC|flcat|On USIng Y No Duplicates Allowed +; ncelled SM4 SD1
N a single-list N Discovered SCMs [*+—— Register SM4 SD1 “—»| Registered Services
q ~ ' [
J : 3 0 : : (SM4, SD1)
4l assumption 3 7y : s
1 N * : CC1 Violated *
' ' N Lease Expired _
1 N SM4 SD1 —» Registered Services
1 N :
1 3
)

Jini Entities Should Register with All Discovered SCMs
about which they maintain knowledge

Sample Consistency Condition #2 (Reqgister Service with Discovered SCMs)

For All (SM, SD, SCM):
SCM IsElementOf SM discovered-SCMs &
SD IsElementOf SM managed-services
implies (SM, SD) IsElementOf SCM registered-services*

...that is, a Service Manager should register its Services on an Service
Cache Manager if the Service Manager has discovered the Cache Manager
and is maintaining the SCM identifier on its “known SCM” Llst.

*Assuming absence of network failure and normal delays due to updates

- SM is Service Manager * discovered-SCMs is a set of SCMs discovered
- SD is Service Description by the SM
- SCM is Service Cache Manager * managed-services is a set of (SM,SD) pairs

maintained by the SM
* registered-services is the set of (SM, SD) pairs
maintained by the SCM

Could the Jini Specification Lead to Implementations Exhibiting
Undesired Interaction between Directed and Multicast Discovery?

Scenario SM4 SCM1
: AddSCM SCM1 jl:isw*?
Discovered SCMs { Found SCM1
DDMgé zvn + Register SM4 SD1 5
() M Registered Services
GroupJoin GROUP1 | o+ (SM4, SD1)

»___Probe SM4 GROUP1 :

Based on a second —Probo SM4GROUP1

Found GROUP 1 SCM]
. . : Discovered SCMs 4_"/7» Registered Services
interpretation of ; MD (SCM1) -

possible

+ !) : 0
specification using — ——Register SM4SD1 |
Separate-list 5 GroupLeave GROUP1 ; Cancel SM4 SD1 ‘—+> Registered Services

.| Registered Services

) ; \ (SM4, SD1)
assumption g : ;

Discovered SCMs 4__-4/) ()
: Cancelled SM4 SD1 :
MD () . :
DD (SCM1) : H
CC2 Violated

For All (SM, SD, SCM):
SCM IsElementOf SM discovered-SCMs & (CC2)
(SD) IsElementOf SM managed-services
implies (SM, SD) IsElementOf SCM registered-services

NN L NN N QT VAIIVEOE GCUTTINARITNIY 1 T UYYI I

Slides Describing Performance Measurement Results
from Jini and UPnP Implementations

- ININJ I L e O ¥ WEAIDOI VY & ST TINGAGEITN I ¥ F IHYrCI¥rysyy

Measurement Methodology

SDP Architectures & Protocols Differ Considerably
— Directory based vs flat peer-to-peer (combinations)
— Java RMI and Serialized Objects vs. HTTP/SOAP/GENA and XML

How to reasonably compare the performance of such diverse technologies?

Usage-Based Scenarios & Metrics
— Service initiation — restart, auto configuration, advertisement, renewal
— Client active query — restart, by name, single instance, multiple instances, all instances
— Client passive monitoring — persistent query for new instances, network restart

— Event Notification and control — registration latency, notification latency, distributed control
performance (control + event notification).

SDP-Independent Benchmark Service —

— Simple counting device/service that can be used to exercise all significant
discovery/control capabilities of Jini and UPnP.

— Supports — get/set service, GUIDs/attributes/type, control, event notification, GUI

Implementation-Independent Measurement Tools.
— Measure on-the-wire
— Response/Load

Synthetic Workload Generation Tools

 Objective — Emulate large, dynamic environments of 100’s of
devices/services and 10’s of control points / clients.

— Dynamic devices providing the benchmark service.
— Scripted control points execute measurement scenarios.

« SDP Experimenters Toolkits
—Drive real SDP implementations

—Emulate the behavior of a large number of
dynamic devices

—Emulate the behavior control points/
scripted behavior for testing

— Jini & UPnP Initial development complete
— SunMS Jini, Intel UPnP on Linux platforms.

— Target of 100’s of devices and 10’s of
control points met.

Sample Measurement Results

Notes:
» Example results of Client Active Query scenarios.

» Query experiments measure latency / load through the client download of
the service proxy / description.

* Results show two scenarios for Jini

« Jini Restart — includes overhead of client discovery and first access of
look up server.

« Jini — query from “warm” client, after lookup server Discovery has
completed.

* Default UPnP jitter value is 2.5 seconds

NI L NN T QT VATV GCVUTTIN AN ISy 7V T 9Oy civyy 2020000

* In device poll experiment, jitter values of 5.5 sec (64 services) and 11
sec (128 services) were used.

Linux UPnP Scaling Problems
* Problems encountered in achieving initial scaling goals for device
emulation tools.

— UPnP scalability above 40 devices a function of protocol tuning parameters
(e.g., response jitter, multicast retransmission factor).

— Errors in implementation of jitter algorithms

UPNP Jitter Sensitivity

Jitter (sec)

130 1 \-\-\ \-\-\-\-\

120 - W

10 -

100 - /

90

80 /
70

60 /
wlf

40

U ININD L NN N QT VAIVEOE GCUVUTTINIALITNISYy 7 T OYIcvvyy =000

Avg # of Services Discovered (128 active)

30 -

Some Example Results: Jini vs UPnP Discovery

Latency: Query by Unique ID
2
1.8
5 16
LA /
: i -
= 1.2 i{o\—'{/¢ . . —e— Jini Restart
ﬁ 1 —=—UPnP
g 0.8 —a— Jini
i
o 06
< 04 TAA——a———— & —& A
0.2
0 T T T T T T
0 20 40 60 80 100 120 140
Active Services

Performance of Query for Specific Service: “Find service X”

g

Some Example Results: Jini vs UPnP Discovery

ol
L'}

Utilization: Query by Unique ID

80000

70000 -

*
L 2
L 2

L &
4
L 2
L 2

60000 -

50000 -

—e— Jini Restart
40000 —=— UPnP
—a— Jini

30000

20000

Avg Network Load (bytes)

10000 dd—A—a - - N

1l | O pEE—8 O O u
I 0 20 40 60 80 100 120 140

Active Services

Z
“ Performance of Query for Specific Service: “Find service X”

Some Example Results: Jini vs UPnP Discovery

Latency Query for 1 Service of Type X

=
»

N
I
I

N
N
I

L 3
L 2
*

[N
|

—e— Jini Restart

o
™

—=— UPnP

\ —a—Jini

o o o
N ESN [0)]
/J.g/.’

A

|

|

_

Avg Response Time (sec)

o

20 40 60 80 100 120 140

Active Services

o

Performance of “anycast” Query: “Find one instance of type X”

Some Example Results: Jini vs UPnP Discovery

Utilization: Query for 1 Service of Type X
300000
—_ 250000 - /
()
2
>
£ 200000
]
8 —e— Jini Restart
; 150000 | —=UPnP
g —a—Jini
2 100000 -
s o
C 2 * *
50000
r ‘n/!/:/ " " A
1l | 0 - T T T T T T
I 0 20 40 60 80 100 120 140
!. # Active Services

Z
“ Performance of “anycast” Query: “Find one instance of type X”

i

Some Example Results: Jini vs UPnP Discovery

|

W)
o)

O Latency: Query All Services

—e— Jini Restart
—a— UPnP
—a— Jini

F 10 |

Avg Response Time (sec)
N

5.5

2.5

I 0 20 40 60 80 100 120 140

" # Active Services

Z
“ Performance of Service/Device Poll: “Find all active services”

g

Some Example Results: Jini vs UPnP Discovery

ol
L'}

Utilization: Query All Services

1400000

1200000

1000000

800000 - —e— Jini Restart

W\

—=— UPnP

600000 —a—Jini

400000 -

Average Network Load (bytes)

200000 -

O B T T T T T T
0 20 40 60 80 100 120 140

Active Services

Performance of Service/Device Poll: “Find all active services”

